
Prepare for what *Loom*s ahead

Prepare for what
*Loom*s ahead

Dr Heinz M. Kabutz
Last updated 2022-09-02

© 2021-2022 Heinz Kabutz – All Rights Reserved

1

Prepare for what *Loom*s ahead

Heinz Kabutz
! The Java Specialists' Newsletter

– 303 editions, published since 2000
– www.javaspecialists.eu

! Please say "hi" to heinz@javaspecialists.eu :-)

! A bit later ...
– 3-way split for my Java Specialists Superpack '22

• Stay tuned, don't miss it ...

2

Prepare for what *Loom*s ahead

When is Loom Coming?
! Already part of Java 19-preview!

– Structured concurrency in an incubator module

3

Prepare for what *Loom*s ahead

Why do we need Virtual Threads?
! Asynchronous code can be hard to debug

! 1-to-1 Java thread to platform thread does not scale
– ManyThreads demo

! Welcome to Project Loom
– Millions of virtual threads in a single JVM
– Supported by networking, java.util.concurrent, etc.

• Anywhere you would block a thread

4

Prepare for what *Loom*s ahead

Best Deal Search
! Our webpage server requires 4 steps

1. Scan request for search terms
2. Search partner websites
3. Create advertising links
4. Collate results from partner websites

! We can reorder some steps without affecting result

5

Prepare for what *Loom*s ahead

Sequential Best Deal Search
! Sequential processing is the simplest

6

public void renderPage(HttpRequest request) {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 List<SearchResult> results = terms.stream()
 .map(SearchTerm::searchOnPartnerSite) // 2
 .toList();
 createAdvertisingLinks(request); // 3
 results.forEach(this::collateResult); // 4
}

4.3 seconds

Prepare for what *Loom*s ahead

Page Renderer with Future
! Search partner sites in the background with Callable

– We might get better performance this way
– If we are lucky, search results are ready when we need them

7

Prepare for what *Loom*s ahead

Searching in Background Thread
public class FutureRenderer extends BasicRenderer {
 private final ExecutorService executor;

 public FutureRenderer(ExecutorService executor) {
 this.executor = executor;
 }

 public void renderPage(HttpRequest request)
 throws ExecutionException, InterruptedException {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 Callable<List<SearchResult>> task = () ->
 terms.stream()
 .map(SearchTerm::searchOnPartnerSite) // 2
 .toList();
 Future<List<SearchResult>> results = executor.submit(task);
 createAdvertisingLinks(request); // 3
 results.get().forEach(this::collateResult); // 4
 }
}

8

4.1 seconds

Prepare for what *Loom*s ahead

CompletableFuture
! Convert each step into a CompletableFuture

– Then combine these using allOf()
– Code is slightly faster, but a whole lot more complicated

• Need separate pools for CPU and IO bound tasks

9

Prepare for what *Loom*s ahead

Modeling Control Flow
! Our Renderer example as a UML Activity Diagram

10

! Fork

! Join

start

end

Create
advertising

links

Search on
partner
site 1

...

Collate
result

Collate
result

Collate
result

...

Scan for
search
terms

Search on
partner
site 1

Search on
partner
site 1

Prepare for what *Loom*s ahead

renderPage() with CompletableFuture
public class RendererCF extends BasicRenderer {
 private final ExecutorService cpuPool, ioPool;

 public RendererCF(ExecutorService cpuPool, ExecutorService ioPool) {
 this.cpuPool = cpuPool;
 this.ioPool = ioPool;
 }

 public void renderPage(HttpRequest request) {
 renderPageCF(request).join();
 }

 public CompletableFuture<Void> renderPageCF(HttpRequest request) {
 return CompletableFuture.allOf(createAdvertisingLinksCF(request),
 scanSearchTermsCF(request)
 .thenCompose(this::searchAndCollateResults));
 }

 private CompletableFuture<Void> createAdvertisingLinksCF(
 HttpRequest request) {
 return CompletableFuture.runAsync(
 () -> createAdvertisingLinks(request), cpuPool);
 }

11

Prepare for what *Loom*s ahead

searchAndCollateResults()
 private CompletableFuture<List<SearchTerm>> scanSearchTermsCF(
 HttpRequest request) {
 return CompletableFuture.supplyAsync(
 () -> scanForSearchTerms(request), cpuPool);
 }

 private CompletableFuture<Void> searchAndCollateResults(
 List<SearchTerm> list) {
 return CompletableFuture.allOf(
 list.stream()
 .map(this::searchAndCollate)
 .toArray(CompletableFuture<?>[]::new)
);
 }

 private CompletableFuture<Void> searchAndCollate(SearchTerm term) {
 return searchOnPartnerSiteCF(term).thenCompose(this::collateResultCF);
 }

12

Prepare for what *Loom*s ahead

Tasks Wrapped in CompletableFutures
 private CompletableFuture<SearchResult> searchOnPartnerSiteCF(
 SearchTerm term) {
 return CompletableFuture.supplyAsync(
 term::searchOnPartnerSite, ioPool);
 }

 private CompletableFuture<Void> collateResultCF(SearchResult data) {
 return CompletableFuture.runAsync(
 () -> collateResult(data), cpuPool);
 }
}

13

0.9 seconds

Prepare for what *Loom*s ahead

What about plain Thread?
! Could we simply create one thread per task?

– Code would be simpler than with the CompletableFuture

14

Prepare for what *Loom*s ahead

renderPage() with platform threads
public void renderPage(HttpRequest request)
 throws InterruptedException {
 Thread createAdvertisingThread =
 new Thread(() -> createAdvertisingLinks(request)); // 3
 createAdvertisingThread.start();
 Collection<Thread> searchAndCollateThreads =
 scanForSearchTerms(request).stream() // 1
 .map(term -> {
 Thread thread = new Thread(// 2 & 4
 () -> collateResult(term.searchOnPartnerSite()));
 thread.start();
 return thread;
 })
 .toList();
 createAdvertisingThread.join();
 for (Thread searchAndCollateThread : searchAndCollateThreads)
 searchAndCollateThread.join();
}

15

0.5 seconds

Started 11 threads

Prepare for what *Loom*s ahead

Not scalable
! Even one thread per client connection is too many

– In our example we could be launching dozens of threads

16

Prepare for what *Loom*s ahead

Virtual Threads
! Lightweight, less than 1 kilobyte

! Fast to create

! Over 23 million virtual threads in 16 GB of memory

! Executed by carrier threads
– Scheduler is currently a ForkJoinPool

• Carriers are by default daemon threads
• # threads is Runtime.getRuntime().availableProcessors()

– Can temporarily increase due to ManagedBlocker

– Moved off carrier threads when blocking on IO
• Also with waiting on synchronizers from java.util.concurrent

17

Prepare for what *Loom*s ahead

Before we continue ...
! 3-way split for Java Specialists Superpack '22

– We all want to support Devoxx Ukraine!
– 1/3 discount for you, 1/3 donation to Devoxx UA, 1/3 me
– https://tinyurl.com/devua22
– Offer expires Friday the 9th Sep 22, please don't miss it!

18

Prepare for what *Loom*s ahead

Let's go back to SingleThreadedRenderer
! If threads are unlimited and free, why not create a

new virtual thread for every task?

! This is how our single-threaded renderer looked

19

public void renderPage(HttpRequest request) {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 List<SearchResult> results = terms.stream()
 .map(SearchTerm::searchOnPartnerSite) // 2
 .toList();
 createAdvertisingLinks(request); // 3
 results.forEach(this::collateResult); // 4
}

tinyurl.com/devua22

Prepare for what *Loom*s ahead

Virtual threads galore
public void renderPage(HttpRequest request)
 throws InterruptedException {
 Thread createAdvertisingThread =
 Thread.startVirtualThread(
 () -> createAdvertisingLinks(request)); // 3
 Collection<Thread> searchAndCollateThreads =
 scanForSearchTerms(request).stream() // 1
 .map(term -> Thread.startVirtualThread(// 2 & 4
 () -> collateResult(term.searchOnPartnerSite())))
 .toList();
 createAdvertisingThread.join();
 for (Thread searchThread : searchAndCollateThreads)
 searchThread.join();
}

20

0.5 seconds

Prepare for what *Loom*s ahead

How to create virtual threads
! Individual threads

– Thread.startVirtualThread(Runnable)
– Thread.ofVirtual().start(Runnable)

! ExecutorService
– Executors.newVirtualThreadPerTaskExecutor()
– ExecutorService is now AutoCloseable

• close() calls shutdown() and awaitTermination()

21

tinyurl.com/devua22

Prepare for what *Loom*s ahead

Using ExecutorService
public void renderPage(HttpRequest request) {
 try (ExecutorService mainPool =
 Executors.newVirtualThreadPerTaskExecutor()) {
 mainPool.submit(() -> createAdvertisingLinks(request)); // 3
 mainPool.submit(() -> {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 try (ExecutorService searchAndCollatePool =
 Executors.newVirtualThreadPerTaskExecutor()) {
 terms.forEach(term -> searchAndCollatePool.submit(// 2 & 4
 () -> collateResult(term.searchOnPartnerSite())));
 }
 });
 }
}

22

0.5 seconds

Prepare for what *Loom*s ahead

Structured Concurrency (Incubator)
! Better approach for describing concurrent flows

– https://openjdk.org/jeps/428

! Idioms are still being developed, e.g.

23

public void renderPage(HttpRequest request)
 throws InterruptedException, ExecutionException {
 try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
 scope.fork(() -> createAdvertisingLinks(request)); // 3
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 terms.forEach(term -> scope.fork(
 () -> collateResult(term.searchOnPartnerSite()))); // 2 & 4
 scope.join(); // Join all forks
 scope.throwIfFailed(); // ... and propagate errors
 }
}

0.5 seconds

Prepare for what *Loom*s ahead

ManagedBlocker
! ForkJoinPool makes more threads when blocked

– ForkJoinPool is configured with desired parallelism

! Uses in the JDK
– Java 7: Phaser
– Java 8: CompletableFuture
– Java 9: Process, SubmissionPublisher
– Java 14: AbstractQueuedSynchronizer

• ReentrantLock, ReentrantReadWriteLock, CountDownLatch,
Semaphore

– Java 17: LinkedTransferQueue, SynchronousQueue
– Loom: SelectorImpl, Object.wait(), old I/O

24

Prepare for what *Loom*s ahead

ManagedBlocker
! Might need to update our code base

– Ideally we should never block a thread with native methods
– If we cannot avoid it, wrap the code in a ManagedBlocker

25

Prepare for what *Loom*s ahead

Java IO Implementation Rewritten
! JEP353 Reimplement Legacy Socket API

– PlainSocketImpl replaced by NioSocketImpl
– https://openjdk.java.net/jeps/353

! JEP373 Reimplement Legacy DatagramSocket API
– https://openjdk.java.net/jeps/373

26

Prepare for what *Loom*s ahead

Synchronized ⇒ ReentrantLock
! synchronized/wait is not fully compatible with Loom

– Virtual thread will stall the underlying carrier thread
• It will create additional threads through ManagedBlocker

27

Object monitor = new Object();
for (int i = 0; i < 10_000; i++) {
 Thread.startVirtualThread(() -> {
 synchronized (monitor) {
 try {
 monitor.wait();
 } catch (InterruptedException ignore) {}
 }
 });
}
Thread.startVirtualThread(() -> System.out.println("done")).join();

no output

Prepare for what *Loom*s ahead

Object.wait()
public final void wait(long timeoutMillis)
 throws InterruptedException {
 Thread thread = Thread.currentThread();
 if (thread.isVirtual()) {
 try {
 Blocker.managedBlock(() -> wait0(timeoutMillis));
 } catch (Exception e) {
 if (e instanceof InterruptedException)
 thread.getAndClearInterrupt();
 throw e;
 }
 } else {
 wait0(timeoutMillis);
 }
}

28

Prepare for what *Loom*s ahead

Synchronized ⇒ ReentrantLock
! We might need to migrate our synchronized code to

– ReentrantLock
– StampedLock

! In both cases, idioms are more complicated
– But fully compatible with virtual threads

29

Prepare for what *Loom*s ahead

Biased Locking Turned Off
! ConcurrentHashMap uses synchronized

– Earlier versions used ReentrantLock

! Uncontended ConcurrentHashMap in Java 15 is
measurably slower on some hardware

– -XX:+UseBiasedLocking to enable it again
– Please report if turning it on makes a big difference

30

Prepare for what *Loom*s ahead

! Virtual threads support ThreadLocal by default
– However, it is costly
– Virtual threads not reused

• ThreadLocals often do not make sense

! Disallow with Builder.allowSetThreadLocals(false)

! Replaced by Extent-Local Variables (Incubator)
– https://openjdk.org/jeps/429

Rather do not use ThreadLocal

31

Prepare for what *Loom*s ahead

public class ThreadLocalTest {
 private static final ThreadLocal<DateFormat> df =
 ThreadLocal.withInitial(() ->
 new SimpleDateFormat("yyyy-MM-dd") {
 {
 System.out.println("Making SimpleDateFormat");
 }
 });

 public static void main(String... args) throws Exception {
 Runnable task = () -> {
 try {
 for (int i = 0; i < 3; i++) {
 System.out.println(df.get().parse("2022-05-04"));
 }
 } catch (ParseException e) { e.printStackTrace(); }
 };
 System.out.println("Standard Virtual Thread");
 Thread.startVirtualThread(task).join();

 System.out.println();

 System.out.println("Disallowing Thread Locals");
 Thread.ofVirtual().allowSetThreadLocals(false)
 .start(task).join();
 }
}

32

Standard Virtual Thread
Making SimpleDateFormat
Mon May 04 00:00:00 EEST 2022
Mon May 04 00:00:00 EEST 2022
Mon May 04 00:00:00 EEST 2022

Disallowing Thread Locals
Making SimpleDateFormat
Mon May 04 00:00:00 EEST 2022
Making SimpleDateFormat
Mon May 04 00:00:00 EEST 2022
Making SimpleDateFormat
Mon May 04 00:00:00 EEST 2022

Prepare for what *Loom*s ahead

Naming
! Virtual threads do not have a name

– Most of the time, sufficient to generate own with threadId()
• Unlike getId(), this threadId() guarantees a unique final value

33

Prepare for what *Loom*s ahead

java.lang.Thread States

34

New

Runnable

Terminated

Blocked

Waiting

Timed
Waiting

Prepare for what *Loom*s ahead

java.lang.VirtualThread States

35

Prepare for what *Loom*s ahead

VirtualThread.getState()

36

VirtualThread State Thread State
NEW NEW

STARTED, RUNNABLE RUNNABLE

RUNNING if mounted, carrier thread state
else RUNNABLE

PARKING, YIELDING RUNNABLE

PINNED, PARKED,
PARKED_SUSPENDED

WAITING

TERMINATED TERMINATED

Prepare for what *Loom*s ahead

Cost of old IO Streams
! Benefit of Virtual Threads, is we can use the old

java.io.InputStream and java.io.Reader
– As opposed to java.nio Channel and Buffer

! But, they actually use a lot of memory

37

Prepare for what *Loom*s ahead

Memory overhead of IO Streams

38

OutputStream InputStream Writer Reader

Print 17400 80

Buffered 8312 8296 16488 16496
Data 80 328

File 176 176 936 8552

GZIP 768 1456

Object 2264 2256

Adapter 808 8424

Prepare for what *Loom*s ahead

Used to be slightly worse

39

OutputStream InputStream Writer Reader

Print 25064 80

Buffered 8312 8296 16480 16496
Data 80 328

File 176 176 8608 8552

GZIP 768 1456

Object 2264 2256

Adapter 8480 8424

Prepare for what *Loom*s ahead

Deadlocks in Virtual Threads
! Deadlocks with a virtual thread not in thread dump

– https://www.javaspecialists.eu/archive/Issue302.html

!

40

"platform" #30 cpu=1.75ms elapsed=4.42s waiting for monitor entry
 java.lang.Thread.State: BLOCKED (on object monitor)
 at SimpleLockOrderingDeadlockMixedThreads.lambda$main$0
 - waiting to lock <0x000000043fce3d90> (a java.lang.Object)
 - locked <0x000000043fce3d80> (a java.lang.Object)
 at SimpleLockOrderingDeadlockMixedThreads$$Lambda$14
 at java.lang.Thread.run

"ForkJoinPool-1-worker-1" #32 daemon cpu=0.70ms elapsed=4.41s
 Carrying virtual thread #31
 at jdk.internal.vm.Continuation.run
 at java.lang.VirtualThread.runContinuation
 at java.lang.VirtualThread$$Lambda$22
 at java.util.concurrent.ForkJoinTask$RunnableExecuteAction.exec
 at java.util.concurrent.ForkJoinTask.doExec
 at java.util.concurrent.ForkJoinPool$WorkQueue.topLevelExec
 at java.util.concurrent.ForkJoinPool.scan
 at java.util.concurrent.ForkJoinPool.runWorker
 at java.util.concurrent.ForkJoinWorkerThread.run

Prepare for what *Loom*s ahead

How to find out what thread #31 is doing?
! Run the JVM with -Djdk.trackAllThreads=true

! Once deadlock occurs
– jcmd pid Thread.dump_to_file some_file

!

41

#31 "virtual" virtual
 SimpleLockOrderingDeadlockMixedThreads.lambda$main$1\
 (SimpleLockOrderingDeadlockMixedThreads.java:22)
 java.base/java.lang.VirtualThread.run
 java.base/java.lang.VirtualThread$VThreadContinuation.lambdanew0
 java.base/jdk.internal.vm.Continuation.enter0
 java.base/jdk.internal.vm.Continuation.enter

Prepare for what *Loom*s ahead

Deadlocks with ReentrantLock
! Does not pin the carrier thread

– Much harder to find these
– Good luck!

42

Prepare for what *Loom*s ahead

Retrofitting to Asynchronous Code
! If your system works fine asynchronously, leave it

– Virtual threads help to alleviate some of the pain
– But are not necessarily faster
– And retrofitting them is probably more trouble than worth

! Backpressure
– With virtual thread model, use Semaphore or BlockingQueue

• Be careful though, Semaphore is a rather primitive construct
– Has no record of who owns the Semaphore
– If a permit is lost due to an exception, parallelism is reduced

43

Prepare for what *Loom*s ahead

When will Loom be ready?
! Currently in Java 19-preview

! Some parts already in mainstream Java

! However, Java has different levels of readiness
– Part of the JDK
– Preview feature

• Mostly done, can still change
• Has to be supported by all Java runtimes of that version !

– Experimental feature
• Epsilon GC
• Does not have to be supported by Java runtimes

– Incubator

44

Prepare for what *Loom*s ahead

Don't forget ...
! 3-way split for Java Specialists Superpack '22

– We all want to support Devoxx Ukraine!
– 1/3 discount for you, 1/3 donation to Devoxx UA, 1/3 me
– https://tinyurl.com/devua22
– Offer expires Friday the 9th Sep 22, please don't miss it!

45

