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Heinz Kabutz
! The Java Specialists' Newsletter 

– 303 editions, published since 2000 
– www.javaspecialists.eu 

! Please say "hi" to heinz@javaspecialists.eu :-) 

! A bit later ... 
– 3-way split for my Java Specialists Superpack '22 

• Stay tuned, don't miss it ... 
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When is Loom Coming?
! Already part of Java 19-preview! 

– Structured concurrency in an incubator module
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Why do we need Virtual Threads?
! Asynchronous code can be hard to debug 

! 1-to-1 Java thread to platform thread does not scale 
– ManyThreads demo 

! Welcome to Project Loom 
– Millions of virtual threads in a single JVM 
– Supported by networking, java.util.concurrent, etc. 

• Anywhere you would block a thread

4



Prepare for what *Loom*s ahead

Best Deal Search
! Our webpage server requires 4 steps 

1. Scan request for search terms 
2. Search partner websites 
3. Create advertising links 
4. Collate results from partner websites 

! We can reorder some steps without affecting result
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Sequential Best Deal Search
! Sequential processing is the simplest
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public void renderPage(HttpRequest request) { 
  List<SearchTerm> terms = scanForSearchTerms(request); // 1 
  List<SearchResult> results = terms.stream() 
      .map(SearchTerm::searchOnPartnerSite) // 2 
      .toList(); 
  createAdvertisingLinks(request); // 3 
  results.forEach(this::collateResult); // 4 
}

4.3 seconds
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Page Renderer with Future
! Search partner sites in the background with Callable 

– We might get better performance this way  
– If we are lucky, search results are ready when we need them

7



Prepare for what *Loom*s ahead

Searching in Background Thread
public class FutureRenderer extends BasicRenderer { 
  private final ExecutorService executor; 

  public FutureRenderer(ExecutorService executor) { 
    this.executor = executor; 
  } 

  public void renderPage(HttpRequest request) 
      throws ExecutionException, InterruptedException { 
    List<SearchTerm> terms = scanForSearchTerms(request); // 1 
    Callable<List<SearchResult>> task = () -> 
        terms.stream() 
            .map(SearchTerm::searchOnPartnerSite) // 2 
            .toList(); 
    Future<List<SearchResult>> results = executor.submit(task); 
    createAdvertisingLinks(request); // 3 
    results.get().forEach(this::collateResult); // 4 
  } 
}
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4.1 seconds



Prepare for what *Loom*s ahead

CompletableFuture
! Convert each step into a CompletableFuture 

– Then combine these using allOf() 
– Code is slightly faster, but a whole lot more complicated 

• Need separate pools for CPU and IO bound tasks
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Modeling Control Flow
! Our Renderer example as a UML Activity Diagram
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renderPage() with CompletableFuture
public class RendererCF extends BasicRenderer { 
  private final ExecutorService cpuPool, ioPool; 

  public RendererCF(ExecutorService cpuPool, ExecutorService ioPool) { 
    this.cpuPool = cpuPool; 
    this.ioPool = ioPool; 
  } 

  public void renderPage(HttpRequest request) { 
    renderPageCF(request).join(); 
  } 

  public CompletableFuture<Void> renderPageCF(HttpRequest request) { 
    return CompletableFuture.allOf(createAdvertisingLinksCF(request), 
        scanSearchTermsCF(request) 
            .thenCompose(this::searchAndCollateResults)); 
  } 

  private CompletableFuture<Void> createAdvertisingLinksCF( 
      HttpRequest request) { 
    return CompletableFuture.runAsync( 
        () -> createAdvertisingLinks(request), cpuPool); 
  }
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searchAndCollateResults()
  private CompletableFuture<List<SearchTerm>> scanSearchTermsCF( 
      HttpRequest request) { 
    return CompletableFuture.supplyAsync( 
        () -> scanForSearchTerms(request), cpuPool); 
  } 

  private CompletableFuture<Void> searchAndCollateResults( 
      List<SearchTerm> list) { 
    return CompletableFuture.allOf( 
        list.stream() 
            .map(this::searchAndCollate) 
            .toArray(CompletableFuture<?>[]::new) 
    ); 
  } 

  private CompletableFuture<Void> searchAndCollate(SearchTerm term) { 
    return searchOnPartnerSiteCF(term).thenCompose(this::collateResultCF); 
  }
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Tasks Wrapped in CompletableFutures
  private CompletableFuture<SearchResult> searchOnPartnerSiteCF( 
      SearchTerm term) { 
    return CompletableFuture.supplyAsync( 
        term::searchOnPartnerSite, ioPool); 
  } 

  private CompletableFuture<Void> collateResultCF(SearchResult data) { 
    return CompletableFuture.runAsync( 
        () -> collateResult(data), cpuPool); 
  } 
}
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0.9 seconds
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What about plain Thread?
! Could we simply create one thread per task? 

– Code would be simpler than with the CompletableFuture
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renderPage() with platform threads
public void renderPage(HttpRequest request)  
    throws InterruptedException { 
  Thread createAdvertisingThread = 
      new Thread(() -> createAdvertisingLinks(request)); // 3 
  createAdvertisingThread.start(); 
  Collection<Thread> searchAndCollateThreads = 
      scanForSearchTerms(request).stream() // 1 
          .map(term -> { 
            Thread thread = new Thread(// 2 & 4 
              () -> collateResult(term.searchOnPartnerSite())); 
            thread.start(); 
            return thread; 
          }) 
          .toList(); 
  createAdvertisingThread.join(); 
  for (Thread searchAndCollateThread : searchAndCollateThreads)  
    searchAndCollateThread.join(); 
}
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0.5 seconds

Started 11 threads
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Not scalable
! Even one thread per client connection is too many 

– In our example we could be launching dozens of threads
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Virtual Threads
! Lightweight, less than 1 kilobyte 

! Fast to create 

! Over 23 million virtual threads in 16 GB of memory 

! Executed by carrier threads 
– Scheduler is currently a ForkJoinPool 

• Carriers are by default daemon threads 
• # threads is Runtime.getRuntime().availableProcessors() 

– Can temporarily increase due to ManagedBlocker 

– Moved off carrier threads when blocking on IO 
• Also with waiting on synchronizers from java.util.concurrent
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Before we continue ...
! 3-way split for Java Specialists Superpack '22 

– We all want to support Devoxx Ukraine! 
– 1/3 discount for you, 1/3 donation to Devoxx UA, 1/3 me 
– https://tinyurl.com/devua22 
– Offer expires Friday the 9th Sep 22, please don't miss it!
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Let's go back to SingleThreadedRenderer
! If threads are unlimited and free, why not create a 

new virtual thread for every task? 

! This is how our single-threaded renderer looked
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public void renderPage(HttpRequest request) { 
  List<SearchTerm> terms = scanForSearchTerms(request); // 1 
  List<SearchResult> results = terms.stream() 
      .map(SearchTerm::searchOnPartnerSite) // 2 
      .toList(); 
  createAdvertisingLinks(request); // 3 
  results.forEach(this::collateResult); // 4 
}

tinyurl.com/devua22
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Virtual threads galore
public void renderPage(HttpRequest request)  
    throws InterruptedException { 
  Thread createAdvertisingThread =    
      Thread.startVirtualThread( 
          () -> createAdvertisingLinks(request)); // 3 
  Collection<Thread> searchAndCollateThreads = 
      scanForSearchTerms(request).stream() // 1 
        .map(term -> Thread.startVirtualThread( // 2 & 4 
            () -> collateResult(term.searchOnPartnerSite()))) 
        .toList(); 
  createAdvertisingThread.join(); 
  for (Thread searchThread : searchAndCollateThreads) 
    searchThread.join(); 
} 
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0.5 seconds
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How to create virtual threads
! Individual threads 

– Thread.startVirtualThread(Runnable) 
– Thread.ofVirtual().start(Runnable) 

! ExecutorService 
– Executors.newVirtualThreadPerTaskExecutor() 
– ExecutorService is now AutoCloseable 

• close() calls shutdown() and awaitTermination()
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Using ExecutorService
public void renderPage(HttpRequest request) { 
  try (ExecutorService mainPool = 
           Executors.newVirtualThreadPerTaskExecutor()) { 
    mainPool.submit(() -> createAdvertisingLinks(request)); // 3 
    mainPool.submit(() -> { 
      List<SearchTerm> terms = scanForSearchTerms(request); // 1 
      try (ExecutorService searchAndCollatePool = 
                 Executors.newVirtualThreadPerTaskExecutor()) { 
          terms.forEach(term -> searchAndCollatePool.submit( // 2 & 4 
              () -> collateResult(term.searchOnPartnerSite()))); 
      } 
    }); 
  } 
}
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Structured Concurrency (Incubator)
! Better approach for describing concurrent flows 

– https://openjdk.org/jeps/428 

! Idioms are still being developed, e.g.
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public void renderPage(HttpRequest request) 
    throws InterruptedException, ExecutionException { 
  try (var scope = new StructuredTaskScope.ShutdownOnFailure()) { 
    scope.fork(() -> createAdvertisingLinks(request)); // 3 
    List<SearchTerm> terms = scanForSearchTerms(request); // 1 
    terms.forEach(term -> scope.fork( 
        () -> collateResult(term.searchOnPartnerSite()))); // 2 & 4 
    scope.join();           // Join all forks 
    scope.throwIfFailed();  // ... and propagate errors 
  } 
}

0.5 seconds
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ManagedBlocker
! ForkJoinPool makes more threads when blocked 

– ForkJoinPool is configured with desired parallelism 

! Uses in the JDK 
– Java 7: Phaser 
– Java 8: CompletableFuture 
– Java 9: Process, SubmissionPublisher 
– Java 14: AbstractQueuedSynchronizer 

• ReentrantLock, ReentrantReadWriteLock, CountDownLatch, 
Semaphore 

– Java 17: LinkedTransferQueue, SynchronousQueue 
– Loom: SelectorImpl, Object.wait(), old I/O
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ManagedBlocker
! Might need to update our code base 

– Ideally we should never block a thread with native methods 
– If we cannot avoid it, wrap the code in a ManagedBlocker
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Java IO Implementation Rewritten
! JEP353 Reimplement Legacy Socket API 

– PlainSocketImpl replaced by NioSocketImpl 
– https://openjdk.java.net/jeps/353 

! JEP373 Reimplement Legacy DatagramSocket API 
– https://openjdk.java.net/jeps/373
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Synchronized ⇒ ReentrantLock
! synchronized/wait is not fully compatible with Loom 

– Virtual thread will stall the underlying carrier thread 
• It will create additional threads through ManagedBlocker
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Object monitor = new Object(); 
for (int i = 0; i < 10_000; i++) { 
  Thread.startVirtualThread(() -> { 
    synchronized (monitor) { 
      try { 
        monitor.wait(); 
      } catch (InterruptedException ignore) {} 
    } 
  }); 
} 
Thread.startVirtualThread(() -> System.out.println("done")).join();

no output
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Object.wait()
public final void wait(long timeoutMillis)  
    throws InterruptedException { 
  Thread thread = Thread.currentThread(); 
  if (thread.isVirtual()) { 
    try { 
      Blocker.managedBlock(() -> wait0(timeoutMillis)); 
    } catch (Exception e) { 
      if (e instanceof InterruptedException) 
        thread.getAndClearInterrupt(); 
      throw e; 
    } 
  } else { 
    wait0(timeoutMillis); 
  } 
} 
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Synchronized ⇒ ReentrantLock
! We might need to migrate our synchronized code to 

– ReentrantLock 
– StampedLock 

! In both cases, idioms are more complicated 
– But fully compatible with virtual threads
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Biased Locking Turned Off
! ConcurrentHashMap uses synchronized 

– Earlier versions used ReentrantLock 

! Uncontended ConcurrentHashMap in Java 15 is 
measurably slower on some hardware 

– -XX:+UseBiasedLocking to enable it again 
– Please report if turning it on makes a big difference
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! Virtual threads support ThreadLocal by default 
– However, it is costly 
– Virtual threads not reused 

• ThreadLocals often do not make sense 

! Disallow with Builder.allowSetThreadLocals(false) 

! Replaced by Extent-Local Variables (Incubator) 
– https://openjdk.org/jeps/429

Rather do not use ThreadLocal 
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public class ThreadLocalTest { 
  private static final ThreadLocal<DateFormat> df = 
      ThreadLocal.withInitial(() -> 
          new SimpleDateFormat("yyyy-MM-dd") { 
            { 
              System.out.println("Making SimpleDateFormat"); 
            } 
          }); 

  public static void main(String... args) throws Exception { 
    Runnable task = () -> { 
      try { 
        for (int i = 0; i < 3; i++) { 
          System.out.println(df.get().parse("2022-05-04")); 
        } 
      } catch (ParseException e) { e.printStackTrace(); } 
    }; 
    System.out.println("Standard Virtual Thread"); 
    Thread.startVirtualThread(task).join(); 

    System.out.println(); 

    System.out.println("Disallowing Thread Locals"); 
    Thread.ofVirtual().allowSetThreadLocals(false) 
        .start(task).join(); 
  } 
}
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Standard Virtual Thread 
Making SimpleDateFormat 
Mon May 04 00:00:00 EEST 2022 
Mon May 04 00:00:00 EEST 2022 
Mon May 04 00:00:00 EEST 2022 

Disallowing Thread Locals 
Making SimpleDateFormat 
Mon May 04 00:00:00 EEST 2022 
Making SimpleDateFormat 
Mon May 04 00:00:00 EEST 2022 
Making SimpleDateFormat 
Mon May 04 00:00:00 EEST 2022
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Naming
! Virtual threads do not have a name 

– Most of the time, sufficient to generate own with threadId() 
• Unlike getId(), this threadId() guarantees a unique final value
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java.lang.Thread States
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New

Runnable

Terminated

Blocked

Waiting

Timed 
Waiting



Prepare for what *Loom*s ahead

java.lang.VirtualThread States
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VirtualThread.getState()
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VirtualThread State Thread State
NEW NEW

STARTED, RUNNABLE RUNNABLE

RUNNING if mounted, carrier thread state 
else RUNNABLE

PARKING, YIELDING RUNNABLE

PINNED, PARKED, 
PARKED_SUSPENDED

WAITING

TERMINATED TERMINATED
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Cost of old IO Streams
! Benefit of Virtual Threads, is we can use the old 

java.io.InputStream and java.io.Reader 
– As opposed to java.nio Channel and Buffer 

! But, they actually use a lot of memory
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Memory overhead of IO Streams
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OutputStream InputStream Writer Reader

Print 17400 80

Buffered 8312 8296 16488 16496
Data 80 328

File 176 176 936 8552

GZIP 768 1456

Object 2264 2256

Adapter 808 8424
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Used to be slightly worse
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OutputStream InputStream Writer Reader

Print 25064 80

Buffered 8312 8296 16480 16496
Data 80 328

File 176 176 8608 8552

GZIP 768 1456

Object 2264 2256

Adapter 8480 8424
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Deadlocks in Virtual Threads
! Deadlocks with a virtual thread not in thread dump 

– https://www.javaspecialists.eu/archive/Issue302.html 

!
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"platform" #30 cpu=1.75ms elapsed=4.42s waiting for monitor entry 
  java.lang.Thread.State: BLOCKED (on object monitor) 
    at SimpleLockOrderingDeadlockMixedThreads.lambda$main$0 
    - waiting to lock <0x000000043fce3d90> (a java.lang.Object) 
    - locked <0x000000043fce3d80> (a java.lang.Object) 
    at SimpleLockOrderingDeadlockMixedThreads$$Lambda$14 
    at java.lang.Thread.run 

"ForkJoinPool-1-worker-1" #32 daemon cpu=0.70ms elapsed=4.41s 
  Carrying virtual thread #31 
    at jdk.internal.vm.Continuation.run 
    at java.lang.VirtualThread.runContinuation 
    at java.lang.VirtualThread$$Lambda$22 
    at java.util.concurrent.ForkJoinTask$RunnableExecuteAction.exec 
    at java.util.concurrent.ForkJoinTask.doExec 
    at java.util.concurrent.ForkJoinPool$WorkQueue.topLevelExec 
    at java.util.concurrent.ForkJoinPool.scan 
    at java.util.concurrent.ForkJoinPool.runWorker 
    at java.util.concurrent.ForkJoinWorkerThread.run
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How to find out what thread #31 is doing?
! Run the JVM with -Djdk.trackAllThreads=true 

! Once deadlock occurs 
– jcmd pid Thread.dump_to_file some_file 

!

41

#31 "virtual" virtual 
  SimpleLockOrderingDeadlockMixedThreads.lambda$main$1\ 
    (SimpleLockOrderingDeadlockMixedThreads.java:22) 
  java.base/java.lang.VirtualThread.run 
  java.base/java.lang.VirtualThread$VThreadContinuation.lambda$new$0 
  java.base/jdk.internal.vm.Continuation.enter0 
  java.base/jdk.internal.vm.Continuation.enter
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Deadlocks with ReentrantLock
! Does not pin the carrier thread 

– Much harder to find these 
– Good luck!
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Retrofitting to Asynchronous Code
! If your system works fine asynchronously, leave it 

– Virtual threads help to alleviate some of the pain 
– But are not necessarily faster 
– And retrofitting them is probably more trouble than worth 

! Backpressure 
– With virtual thread model, use Semaphore or BlockingQueue 

• Be careful though, Semaphore is a rather primitive construct 
– Has no record of who owns the Semaphore 
– If a permit is lost due to an exception, parallelism is reduced
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When will Loom be ready?
! Currently in Java 19-preview 

! Some parts already in mainstream Java 

! However, Java has different levels of readiness 
– Part of the JDK 
– Preview feature 

• Mostly done, can still change 
• Has to be supported by all Java runtimes of that version ! 

– Experimental feature 
• Epsilon GC 
• Does not have to be supported by Java runtimes 

– Incubator
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Don't forget ...
! 3-way split for Java Specialists Superpack '22 

– We all want to support Devoxx Ukraine! 
– 1/3 discount for you, 1/3 donation to Devoxx UA, 1/3 me 
– https://tinyurl.com/devua22 
– Offer expires Friday the 9th Sep 22, please don't miss it!
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